
S.No Regd. No. Page No.

1 221FA20013

2 221FA20019

3 221FA20028

4 221FA20001

5 221FA20015

6 221FA20026

7 221FA20030

8 221FA20016

9 221FA20014

10 221FA20025

2

B.Tech. -Computer Science & Business Systems

18

37

Index

10 221FA20025

11 221FA20005

12 221FA20020

13 221FA20022

14 221FA20029

15 221FA20034

16 221FA20006

17 221FA20010

18 221FA20018

19 221FA20023

20 221FA20002

21 221FA20008

22 221FA20021

23 221FA20033

24 221FA20003

25 221FA20004

26 221FA20009

27 221FA20027

28 221FA20007

29 221FA20012

30 221FA20017
109

53

68

79

94

30 221FA20017

31 221FA20032

109

1

A FIELD PROJECT REPORT ON

ER - DIAGRAM

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

INDURTHI TEJOONEELA (221FA20013)

BHASHYAM JEEVANA (221FA20019)

SHAIK ROOHI (221FA20028)

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

3

DECLARATION

We hereby declare that our project work described in the field project titled “ENTITY

RELATIONSHIP DIAGRAM” which is being submitted by us for the partial

fulfilment in the department of ACSE, Vignan’s Foundation for Science, Technology

and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the

result of investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

INDURTHI TEJOONEELA (221FA20013)

BHASHYAM JEEVANA (221FA20019)

SHAIK ROOHI (221FA20028)

4

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

 SECTION : 2A

BATCH : 01

 Submitted by:

INDURTHI TEJOONEELA (221FA20013)

BHASHYAM JEEVANA (221FA20019)

SHAIK ROOHI (221FA20028)

5

TABLE OF CONTENTS

Name of the content

1. Abstract………………………………………………………………………6

2. Introduction………………………………………………………………….7

3. Entity Relationship Diagrams………………………………………………8-9

3.1.What is ER diagram?..8

3.2.Why use ER diagram?..8

3.3.Components of ER diagram…………………………………………….9-15

3.3.1. Entities……………………………………………………………10

3.3.2. Attributes…………………………………………………………11

3.3.3. Relationships…………………………………………………….13

4. Conclusion…………………………………………………………………….15

5. References…………………………………………………………………….16

6

Abstract

This paper explores the significance of Entity-Relationship (ER) Diagrams in database

design, emphasizing their role in representing the structure and relationships between

entities within a system. ER diagrams offer a visual approach to database modelling,

simplifying the understanding and communication of database architectures among team

members. The study delves into the key components of ER diagrams, including entities,

attributes, and relationships, while also highlighting their application in various

domains. By analysing their strengths and limitations, this research aims to provide

insights into the best practices for creating effective ER diagrams, contributing to

improved database design processes and better system performance.

7

Introduction

Entity-Relationship Diagrams (ER Diagrams) are a crucial part of database design,

providing a visual representation of the relationships between various entities in a

system. These diagrams help database designers, developers, and stakeholders to

understand the structure of a database in a more intuitive and simplified manner. By

representing entities as rectangles and relationships as diamonds, ER diagrams map out

the interactions and associations within a system, ensuring that the database's structure is

aligned with the actual needs of the organization or project.

ER diagrams also facilitate communication among team members, providing a common

language to discuss database designs and requirements. This clear visualization helps in

identifying potential issues such as redundant data, missing relationships, or incorrect

associations early in the development process. As a foundational tool in conceptual data

modelling, ER diagrams lay the groundwork for creating relational databases that

efficiently store, retrieve, and manage data.

The significance of this database design lies in its ability to streamline user account

management, enhance product categorization, and ensure certified shops maintain their

standards. By addressing these core areas, the system not only supports current

operational needs but also lays the groundwork for future expansions and feature

integrations. As ecommerce continues to evolve, the adaptability and robustness of the

database system will play a crucial role in maintaining a competitive edge, providing

users with a reliable and efficient platform for their shopping experiences. This report is

structured to guide the reader through each phase of the database design process, from

conceptual modeling to practical implementation. By the end of this document, readers

will gain a comprehensive understanding of the methodologies employed, the challenges

encountered, and the solutions devised to create a cohesive and functional database

system. The ensuing sections provide a detailed exploration of each component,

underscoring the importance of meticulous planning and strategic execution in database

development.

8

9

10

11

12

13

14

15

CONCLUSION

The ER Diagram project has been instrumental in providing a clear and structured

approach to designing a relational database. By identifying the key entities, their

attributes, and relationships, we developed a logical model that accurately reflects the

data requirements of a well-structured system. This diagram served as a valuable

communication tool, allowing stakeholders to visualize the data architecture and

ensuring alignment across the design process.

Moreover, the ER diagram played a critical role in minimizing data redundancy and

ensuring efficient database performance. It provided a strong foundation for future

implementation while allowing room for scalability and easy maintenance. Overall, this

project demonstrates the power of the ER diagram as a fundamental step in designing

efficient and flexible database systems.

16

References

 1. R. Elmasri, S. Navathe, Fundamentals of Database Systems. 2nd ed.,

Benjamin/Cummings, Redwood City, CA., 1993.

 2. Michael Kushner, Il-Yeol Song, and Kyu-Young Whang, "A Comparative Study of

Three Object-Modeling Methodologies," Systems Development Management, 1994, 34-

03-40 (1-22). (Also in Data Base Management, 26-01-10).

 3. Janet Lind, Il-Yeol Song, and E.K. Park, "Object-Oriented Analysis: A Study in

Diagram Notations," Journal of Computer and Software Engineering, Vol. 3, No. 1

(Winter 1995), pp. 133-165.

 4. K. R. Dittrich, W. Gotthard, and P. Lockemann, "Complex Entities for Engineering

Applications", in Proceedings of the International Conference on the ER Approach,

NorthHolland, (1987), pp. 421-440.

 5. C. Parent and S. Spaccapietra, "About entities, complex objects and object-oriented

data models," in Information System Concepts: An In-depth Analysis, ED.. Falkenberg

and P.Lindgreen (eds.), North-Holland, 1989, pp. 193-223.

 6. P. P-S. Chen, "The entity-relationship model-toward a unified view of data," ACM

Transactions on Database Systems, 1,1 (March 1976), pp. 9-36.

 7. D. Reiner, M. Brodie, and G. Brown, et al. (eds.). "The Database design and

evaluation workbench (DDEW) project at CCA." Database Engineering, 7,4 (1985).

 8. T. J. Teorey, Database Modeling and Design: The Entity-Relationship Approach.

Morgan Kauffmann, San Mateo, CA. 1991.

 9. H. Korth and A. Silberschatz, Database System Concepts. 2nd ed., McGraw-Hill,

New York, N.Y., 1991.

17

A FIELD PROJECT REPORT ON

ENTITY RELATIONSHIP DIAGRAM

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

YAYAVARAM NAGA

SUBRAHMANYA VISHAL

NIKHIL

(221FA20001)

REDDY BHARGAV (221FA20015)

NADENDLA GOPICHANDU (221FA20026)

KAMINENI MANASA (221FA20030)

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

19

DECLARATION

We hereby declare that our project work described in the field project titled “Entity

Relationship Diagram” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research

(Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of

investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

YAYAVARAM NAGA

SUBRAHMANYA VISHAL

NIKHIL

(221FA20001)

REDDY BHARGAV (221FA20015)

NADENDLA

GOPICHANDU
(221FA20026)

KAMINENI MANASA (221FA20030)

20

DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

SECTION : 2A

BATCH : 02

Submitted by:

YAYAVARAM NAGA

SUBRAHMANYA VISHAL

NIKHIL

(221FA20001)

REDDY BHARGAV (221FA20015)

NADENDLA

GOPICHANDU
(221FA20026)

KAMINENI MANASA (221FA20030)

21

TABLE OF CONTENTS

Name of the contents

1. Abstract……………………………………………………………………..22

2. Introduction……………………………………………………………..….23

3. Introduction to ER diagram……………………………………………….24

4. Main components of ER diagram………………………………………….24

5. Entities………………………………………………………………………25-26

5.1.Strong entity………………………………………………………………25

5.2.Weak entity……………………………………………………………….26

6. Attributes……………………………………………………………………..26

7. Relationships……………………………………………………………….27-31

7.1.Degree of relationship…………………………………………………..28

7.2.Mapping constraints…………………………………………………….29

8. Converting ER model to relational model…………………………………31

9. Advantages of ER model…………………………………………………….33

10. Disadvantages of ER model…………………………………………………33

11. Conclusion…………………………………………………………………….34

12. References…………………………………………………………………….35

22

Abstract

This paper explores the significance of Entity-Relationship (ER) Diagrams in database

design, emphasizing their role in representing the structure and relationships between

entities within a system. ER diagrams offer a visual approach to database modelling,

simplifying the understanding and communication of database architectures among team

members. The study delves into the key components of ER diagrams, including entities,

attributes, and relationships, while also highlighting their application in various

domains. By analysing their strengths and limitations, this research aims to provide

insights into the best practices for creating effective ER diagrams, contributing to

improved database design processes and better system performance.

23

Introduction

Entity-Relationship Diagrams (ER Diagrams) are a crucial part of database design,

providing a visual representation of the relationships between various entities in a

system. These diagrams help database designers, developers, and stakeholders to

understand the structure of a database in a more intuitive and simplified manner. By

representing entities as rectangles and relationships as diamonds, ER diagrams map out

the interactions and associations within a system, ensuring that the database's structure is

aligned with the actual needs of the organization or project.

ER diagrams also facilitate communication among team members, providing a common

language to discuss database designs and requirements. This clear visualization helps in

identifying potential issues such as redundant data, missing relationships, or incorrect

associations early in the development process. As a foundational tool in conceptual data

modelling, ER diagrams lay the groundwork for creating relational databases that

efficiently store, retrieve, and manage data.

In modern organizational environments, efficient management of employee time cards is

crucial for accurate payroll processing, performance tracking, and resource allocation.

Traditional paper-based systems are often prone to errors, delays, and difficulties in data

retrieval and analysis. To address these challenges, digitizing time card submissions and

approvals using a robust database system is essential. This report details the design of

such a system, focusing on capturing essential information about employees, managers,

and time cards. By leveraging relational database principles, the system ensures data

integrity, security, and scalability, thereby supporting the company's operational needs

effectively.

24

25

26

27

28

29

30

31

32

33

34

CONCLUSION

In conclusion, Entity-Relationship (ER) diagrams are a valuable tool for visually

representing and understanding the structure of databases. By modeling entities,

attributes, and relationships, ER diagrams provide a clear and concise blueprint for

database design. They are particularly useful in the early stages of database

development, facilitating communication between stakeholders and ensuring that the

database accurately captures the information requirements of the system.

ER diagrams offer several advantages, including their ability to capture complex

relationships, promote understanding among team members, and serve as a foundation

for database implementation. However, it is important to note that ER diagrams have

limitations, such as their potential for becoming overly complex and their difficulty in

representing certain types of data. Nevertheless, when used effectively, ER diagrams can

be a powerful asset in database design and development.

35

REFERENCES

Books:

• Conceptual Database Design: An Entity-Relationship Approach by Carlo

Batini, Sergio Ceri, and Shamkant B. Navathe: A classic textbook that provides a

comprehensive overview of ER modeling and database design.

• Database Systems: Design, Implementation, and Management by Elmasri

and Navathe: A widely used textbook that covers ER diagrams as part of

database design principles.

• Data Modeling Techniques: A Practical Guide to Relational and Object-

Oriented Database Design by David Barker: A practical guide to ER modeling

and other data modeling techniques.

Online Resources:

• Vertabelo: An online database modeling tool that offers tutorials and resources

on ER diagrams, including notation, best practices, and examples.

• Lucidchart: Another popular online diagramming tool that provides templates

and guides for creating ER diagrams.

• GeeksforGeeks: A technical blog with articles on various database concepts,

including ER diagrams and their applications.

• Tutorials Point: A website offering tutorials and courses on database

management systems, including ER modeling.

36

A FIELD PROJECT REPORT ON

FUNCTIONAL DEPENDENCIES AND NORMAL FORMS

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

KOLA VARUN KUMAR

REDDY
(221FA20016)

MALINENI SRIHARI (221FA20014)

CHITIMIREDDY SAIKUMAR

REDDY
(221FA20025)

BANDARU LAKSHMI

CHARITHA
(221FA20005)

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

38

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies and Normal forms” which is being submitted by us for the partial

fulfilment in the department of ACSE, Vignan’s Foundation for Science, Technology

and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the

result of investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

KOLA VARUN KUMAR REDDY (221FA20016)

MALINENI SRIHARI (221FA20014)

CHITIMIREDDY SAIKUMAR REDDY (221FA20025)

BANDARU LAKSHMI CHARITHA (221FA20005)

39

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

 SECTION : 2A

BATCH : 03

Submitted by:

KOLA VARUN KUMAR REDDY (221FA20016)

MALINENI SRIHARI (221FA20014)

CHITIMIREDDY SAIKUMAR REDDY (221FA20025)

BANDARU LAKSHMI CHARITHA (221FA20005)

40

TABLE OF CONTENTS

Name of the contents

1. Abstract……………………………………………………………….41

2. Introduction………………………………………………………….42

3. Introduction to functional dependencies………………………….43-44

3.1. Types of functional dependencies……………………………….43

4. Anomalies in DBMS………………………………………………….45

5. Normalization……………………………………………………....45-49

5.1 First Normal Form……………………………………………….46

5.2 Second Normal Form…………………………………………….47

5.3 Third Normal Form………………………………………………48

6. Conclusion…………………………………………………………….50

7. References……………………………………………………….……51

41

Abstract

This study investigates the role of functional dependencies in relational database design,

focusing on their importance in ensuring data integrity and reducing redundancy.

Functional dependencies describe the relationship between attributes within a relation,

offering a framework for organizing data in an optimal manner. The research highlights

the impact of FDs on the normalization process, which transforms unstructured tables

into well-formed relations. Through a detailed analysis of functional dependencies and

their use in database normalization, this paper provides practical insights into optimizing

database design and preventing common anomalies like update, insert, and delete

anomalies.

42

Introduction

Functional dependencies (FDs) play a fundamental role in the design and optimization

of relational databases. A functional dependency occurs when the value of one attribute

(or set of attributes) in a relation uniquely determines the value of another attribute.

Understanding these dependencies is essential in ensuring database normalization, which

reduces data redundancy and enhances data integrity. In essence, functional

dependencies form the backbone of how relationships are structured in a relational

model, making them a key concept for anyone involved in database management.

By identifying and analysing functional dependencies, database designers can break

down complex tables into smaller, more manageable ones, ensuring that each relation is

in its optimal form. This process helps prevent anomalies during data insertion, deletion,

and updating, and results in a more efficient and reliable database system. Functional

dependencies thus provide a blueprint for creating databases that perform well and scale

easily, with a consistent and structured representation of data.

In relational database management systems (RDBMS), the organization and integrity of

data are paramount. Functional dependencies serve as fundamental constraints that

define how attributes within a table relate to one another. Understanding and accurately

modeling these dependencies are critical for effective database normalization—a

systematic process aimed at reducing data redundancy and enhancing data integrity.

43

44

45

46

47

48

49

50

CONCLUSION

In this project, the concepts of functional dependencies and normal forms played a

crucial role in optimizing the database design. By understanding how certain attributes

in a table depend on others, we were able to identify functional dependencies that

ensured consistency in the data. This understanding allowed us to decompose tables

effectively and eliminate anomalies, such as redundancy and update issues.

Through the process of normalization, we structured the database into higher normal

forms (1NF, 2NF, 3NF, and beyond), ensuring that the design minimized redundancy

and enhanced data integrity. This not only improved query performance but also made

future database maintenance more efficient. Overall, the application of functional

dependencies and normalization was key to developing a well-organized, efficient, and

scalable database.

51

REFERENCES

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems.

Pearson.

2. Date, C. J. (2004). An Introduction to Database Systems. Addison-Wesley.

3. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach to

Design, Implementation, and Management. Pearson.

4. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, &

Management. Cengage Learning.

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book. Prentice Hall.

6. Korth, H. F., & Silberschatz, A. (2002). Database System Concepts. McGraw-

Hill.

7. O’Neil, P., & O’Neil, E. (2009). Database: Principles, Programming, and

Performance. Morgan Kaufmann.

8. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM, 13(6), 377-387.

9. Chen, P. P. (1976). "The Entity-Relationship Model—Toward a Unified View of

Data." ACM Transactions on Database Systems, 1(1), 9-36.

10. Firebird Project. (n.d.). "Firebird SQL." Retrieved from https://firebirdsql.org/

11. MySQL. (n.d.). "MySQL Documentation." Retrieved from

https://dev.mysql.com/doc/

12. PostgreSQL. (n.d.). "PostgreSQL Documentation." Retrieved from

https://www.postgresql.org/docs/

13. Ambler, S. W. (2003). The Object Primer: Agile Model-Driven Development.

Cambridge University Press.

https://firebirdsql.org/
https://dev.mysql.com/doc/
https://www.postgresql.org/docs/

52

A FIELD PROJECT REPORT ON

FUNCTIONAL DEPENDENCIES AND RELATIONAL SCHEMA

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

YEDURU AARADHYA (221FA20020)

RAVELA JYOTHI KAMBIKA (221FA20022)

CHINTALA LOKESH (221FA20029)

INTURI GAYATHRI (221FA20034)

54

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies and Relational Schema” which is being submitted by us for the partial

fulfilment in the department of ACSE, Vignan’s Foundation for Science, Technology

and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the

result of investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

YEDURU AARADHYA (221FA20020)

RAVELA JYOTHI KAMBIKA (221FA20022)

CHINTALA LOKESH (221FA20029)

INTURI GAYATHRI (221FA20034)

55

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

 SECTION : 2A

BATCH : 04

Submitted by:

YEDURU AARADHYA (221FA20020)

RAVELA JYOTHI KAMBIKA (221FA20022)

CHINTALA LOKESH (221FA20029)

INTURI GAYATHRI (221FA20034)

56

TABLE OF CONTENTS

Name of contents

1. Abstract……………………………………………………………………….57

2. Introduction………………………………………………………………….58

3. Definition of Functional Dependencies………………………………...…59-60

3.1.Types of functional dependencies……………………………………….59

4. Decomposition……………………………………………………………60-63

4.1.Properties of decomposition………………………………………………60

5. Anamoly……………………………………………………………………….64

6. Normalization………………………………………………………………....64

7. Conclusion………………………………………………………………….…65

8. References……………………………………………………………………..66

57

Abstract

This paper explores the relationship between functional dependencies and the design of

relational schemas in databases. Functional dependencies define how attributes in a

relation are connected, and they play a pivotal role in database normalization, where

large, complex tables are decomposed into smaller, more efficient ones. The study

highlights the importance of identifying functional dependencies in reducing data

redundancy and avoiding update, insert, and delete anomalies. By analysing their role in

shaping relational schemas, the paper provides a comprehensive understanding of how

functional dependencies contribute to the creation of robust, optimized database designs.

58

Introduction

Functional dependencies (FDs) are an essential concept in relational database theory,

defining how attributes within a relation are related. They serve as rules that govern the

relationships between different attributes, where one attribute (or a combination of

attributes) can uniquely determine another. Understanding these dependencies is crucial

when designing a relational schema because they influence how data is structured,

stored, and accessed. Without properly identifying functional dependencies, databases

risk being inefficient, prone to anomalies, and difficult to maintain.

Relational schemas, which describe the organization of data into tables (relations), are

directly shaped by functional dependencies. They form the framework for database

normalization, a process used to eliminate redundancy and ensure data integrity.

Through normalization, complex relations are broken down into smaller, well-organized

tables based on the functional dependencies that exist among their attributes. A well-

designed relational schema reduces redundancy, prevents anomalies, and ensures that

the database operates efficiently, making functional dependencies a foundational

element in database design.

Normalization involves decomposing a table into smaller, related tables without loss of

data, ensuring that each table adheres to specific normal forms. This process not only

streamlines data storage but also optimizes query performance and simplifies

maintenance. This report delves into the application of functional dependencies and

normalization techniques on the `DISK_DRIVE` relation, demonstrating the transition

from an unnormalized schema to a fully normalized database structure.

59

Functional Dependencies

• A functional dependence is a constraint between two sets of attributes from

the database.

• It plays major role in differentiating good database design from bad

database design.

• Functional dependency is a type of constraint that is generalization of

notion of key.

• Bad database design

o Repetition of information

o Inability to represent certain information

• Good database

o Avoid redundant data

o Ability to represent all information and relationship among attributes.

Definition

• A function dependency denoted by X → Y, between two sets of attributes

X and Y that are subset of R specifies a constraints on the possible tuples

that can form a relation state r of R.

• The value of component Y depends on values of component X

• Abbreviation for functional dependencies is FD or f.d.

• The set of attributes X is called the left-hand side of the FD, and Y is

called the right-hand side.

Example

• Suppose we have a student table with attributes: Stu_Id, Stu_Name,

Stu_Age.

• Here Stu_Id attribute uniquely identifies the Stu_Name attribute of

student table because if we know the student id we can tell the student name

associated with it.

• This is known as functional dependency.

• Can be written as Stu_Id->Stu_Name or in words we can say Stu_Name

is functionally dependent on Stu_Id.

Types of Functional Dependency

• Functional Dependency has three forms:

o Trivial Functional Dependency

o Non-Trivial Functional Dependency

Trivial Functional Dependency
It occurs when B is a subset of A in:

60

{ DeptId, DeptName } -> Dept Id

Example
We are considering the same <Department> table with two attributes to understand the concept of trivial

dependency.

The following is a trivial functional dependency since DeptId is a subset of DeptId and

DeptName

Non –Trivial Functional Dependency

It occurs when B is not a subset of A in:

Example

The above is a non-trivial functional dependency since DeptName is a not a subset of DeptId.

An employee table with three attributes: emp_id, emp_name, emp_address. The following

functional dependencies are non-trivial:

emp_id -> emp_name (emp_name is not a subset of emp_id) emp_id -> emp_address

(emp_address is not a subset of emp_id)

Non-loss Decomposition
What is decomposition?

• Decomposition is the process of breaking down in parts or elements.

• It replaces a relation with a collection of smaller relations.

• It breaks the table into multiple tables in a database.

• It should always be lossless, because it confirms that the information in the original

relation can be accurately reconstructed based on the decomposed relations.

• If there is no proper decomposition of the relation, then it may lead to problems like loss

of information.

Properties of Decomposition

Following are the properties of Decomposition,

1. Lossless Decomposition

2. Dependency Preservation

3. Lack of Data Redundancy

61

1. Lossless Decomposition

• Decomposition must be lossless. It means that the information should not get lost

from the relation that is decomposed.

• It gives a guarantee that the join will result in the same relation as it was

decomposed.

o Let R be a relation schema and let F be a set of functional dependencies on R.

o Let ‘R1’ & ‘R2’ form a decomposition of R.

o Let r(R) be a relation with schema R.

o Decomposition is a losses decomposition, if for legal database instance

∏R1 (r) ⋈ ∏R2 (r) = r

o If user project r onto R1 & R2, and compute the natural join of the

projection results exactly ‘r’. Hence no loss, non-loss decomposition.

Example:

Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed into: E1, E2, E3, .

. . . En; With instance: e1, e2, e3, en, If e1 ⋈ e2 ⋈ e3 ⋈ en, then it is called as

'Lossless Join Decomposition'.
• In the above example, it means that, if natural joins of all the decomposition give

the original relation, then it is said to be lossless join decomposition. Example:

<Employee_Department> Table

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

E005 STU 32 Bangalore 25000 D005 Human Resource

• Decompose the above relation into two relations to check whether a

decomposition is lossless or lossy.

• Now, decompose the relation that is Employee and Department.

Relation 1 : <Employee> Table
Eid Ename Age City Salary

E001 ABC 29 Pune 20000

E002 PQR 30 Pune 30000

E003 LMN 25 Mumbai 5000

E004 XYZ 24 Mumbai 4000

E005 STU 32 Bangalore 25000

Employee Schema contains (Eid, Ename, Age, City, Salary).

Relation 2 : <Department> Table
Deptid Eid DeptName

D001 E001 Finance

D002 E002 Production

62

D003 E003 Sales

D004 E004 Marketing

D005 E005 Human Resource

Department Schema contains (Deptid, Eid, DeptName).

• So, the above decomposition is a Lossless Join Decomposition, because the two

relations contains one common field that is 'Eid' and therefore join is possible.

• Now apply natural join on the decomposed relations.

Employee ⋈ Department
Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

E005 STU 32 Bangalore 25000 D005 Human Resource

Hence, the decomposition is Lossless Join Decomposition.

• If the <Employee> table contains (Eid, Ename, Age, City, Salary) and
<Department> table contains (Deptid and DeptName), then it is not possible to join the two tables or

relations, because there is no common column between them. And it becomes Lossy Join Decomposition.

2. Dependency Preservation

• Dependency is an important constraint on the database.

• Every dependency must be satisfied by at least one decomposed table.

• If {A → B} holds, then two sets are functional dependent. And, it becomes more

useful for checking the dependency easily if both sets in a same relation.

• This decomposition property can only be done by maintaining the functional

dependency.

• In this property, it allows to check the updates without computing the natural join of

the database structure.

• Set of restriction F1, F2, F3… Fn is the set of dependencies that can be checked

efficiently.

o Let, F’ = F1 U F2 U F3 U ….U Fn.
o F’ is a set of functional dependencies on schema R but in general F’ ≠ F.

o The property F’+ = F+ is a dependency preserving decomposition.

o F = {A → B, B → C}. F+ is dependency A → C even though it is not in F.

63

1. Lack of Data Redundancy

• Lack of Data Redundancy is also known as a Repetition of Information.

• The proper decomposition should not suffer from any data redundancy.

• The careless decomposition may cause a problem with the data.

• The lack of data redundancy property may be achieved by Normalization

process.

Normalization

• Normalization is a process of organizing the data in database to avoid

o Data Redundancy

o Insertion anomaly

o Deletion anomaly.

o Update anomaly &

• Normalization divides the larger table into the smaller table and links them using

relationship.

• The normal form is used to reduce redundancy from the database table.

• Normalization is the process of minimizing redundancy from a relation or set of

relations. Redundancy in relation may cause insertion, deletion and updating anomalies.

• Normalization is a systematic approach of decomposing tables to eliminate data

redundancy (repetition) and undesirable characteristics like Insertion, Update and

Deletion Anamolies.

Anomalies

• Insert anomalies – When user tried to insert data in a record that does not exist at all.

• Deletion anomalies – When user tried to delete a record, but parts of it was left

undeleted because of unawareness, the data is also saved somewhere else. When user

tried to delete a record, which cause deletion of some other data from the table/realation.

• Update anomalies − If data items are scattered and are not linked to each other properly,

then it could lead to strange situations. For example, when we try to update one data item

having its copies scattered over several places, a few instances get updated properly

while a few others are left with old values. Such instances leave the database in an

inconsistent state.

• Example: Suppose a manufacturing company stores the employee details in a table

named employee that has four attributes:

o emp_id for storing employee’s id,

o emp_name for storing employee’s name,

o emp_address for storing employee’s address and

o emp_dept for storing the department details in which the employee

works.

64

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

• The above table is not normalized. We will see the problems that we face

when a table is not normalized.

• Insert anomaly: Suppose a new employee joins the company, who is under

training and currently not assigned to any department then we would not

be able to insert the data into the table if emp_dept field doesn’t allow

nulls.

• Delete anomaly: Suppose, if at a point of time the company closes the

department D890 then deleting the rows that are having emp_dept as

D890 would also delete the information of employee Maggie since she is

assigned only to this department.

• Update anomaly: In the above table we have two rows for employee Rick as

he belongs to two departments of the company. If we want to update the

address of Rick then we have to update the same in two rows or the data will

become inconsistent. If somehow, the correct address gets updated in one

department but not in other then as per the database, Rick would be having

two different addresses, which is not correct and would lead to inconsistent

data.

• To overcome these anomalies, we need to normalize the data.

65

CONCLUSION

In this project, the exploration of functional dependencies and their impact on

the relational schema was essential in creating an efficient database design. By

identifying and analysing functional dependencies between attributes, we gained a

deeper understanding of how data elements are interconnected. This process allowed us

to structure the relational schema in a way that minimized redundancy and eliminated

potential update, insertion, and deletion anomalies.

The careful application of these functional dependencies led to a well-normalized

relational schema, ensuring that the data is both consistent and easily maintainable. This

structured approach provides a foundation for scalable, efficient, and high-performing

database systems. Ultimately, this project highlights the importance of leveraging

functional dependencies to refine and optimize the relational schema for long-term

usability and data integrity.

66

REFERENCES

1. Korth, H. F., & Sudarshan, S. (2019). Database System Concepts (7th ed.).

McGraw-Hill Education.

2. Ramakrishnan, R., & Gehrke, J. (2013). Database Management Systems (3rd

ed.). McGraw-Hill Education.

3. Date, C. J. (2004). An Introduction to Database Systems (8th ed.). Addison-

Wesley.

4. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems (7th

ed.). Pearson.

5. Rob, P., & Coronel, C. (2017). Database Systems: Design, Implementation, &

Management (13th ed.). Cengage Learning.

6. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach

to Design, Implementation, and Management (6th ed.). Pearson.

7. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System

Concepts (6th ed.). McGraw-Hill.

8. Gonzalez, A. J. (2016). "A Comparative Study of Library Management

Systems." International Journal of Computer Applications, 140(3), 22-28.

9. Zhang, Y., & Yao, W. (2015). "A Cloud-Based Library Management System."

International Journal of Cloud Computing and Services Science, 4(2), 123-134.

10. Chowdhury, G. G. (2004). Introduction to Digital Libraries. Facet Publishing.

11. Ranganathan, S. R. (1931). Colon Classification. Asia Publishing House.

12. Bates, M. J. (2005). "An Introduction to Metadata." Digital Libraries:

Technology and Management, 4-8.

13. W3Schools. (n.d.). "SQL Tutorial." Retrieved from W3Schools SQL

14. Oracle. (n.d.). "Oracle Database Documentation." Retrieved from Oracle Docs

15. MySQL Documentation. (n.d.). "MySQL Reference Manual." Retrieved from

MySQL Docs

https://docs.oracle.com/en/database/
https://dev.mysql.com/doc/

67

A FIELD PROJECT REPORT ON

FUNCTIONAL DEPENDENCIES

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

CHINNAPAREDDY

GOWTHAM REDDY
(221FA20006)

GADE LOKESH (221FA20010)

NARAYANAM LASYA (221FA20018)

TADIBOINA SAIDABABU (221FA20023)

69

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research

(Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of

investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

CHINNAPAREDDY GOWTHAM REDDY (221FA20006)

GADE LOKESH (221FA20010)

NARAYANAM LASYA (221FA20018)

TADIBOINA SAIDABABU (221FA20023)

70

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

 SECTION : 2A

BATCH : 05

Submitted by:

CHINNAPAREDDY GOWTHAM

REDDY
(221FA20006)

GADE LOKESH (221FA20010)

NARAYANAM LASYA (221FA20018)

TADIBOINA SAIDABABU (221FA20023)

71

TABLE OF CONTENTS

Name of contents

1. Abstract………………………………………………………72

2. Introduction………………………………………………….73

3. Functional Dependency…………………………………….74

4. Example for functional dependency……………………….74

5. Rules for functional dependency……………………………75

6. Conclusion……………………………………………………76

7. References……………………………………………………77

72

Abstract

This paper examines the concept of functional dependencies (FDs) and their importance

in relational database design. Functional dependencies define the relationship between

attributes, where one attribute uniquely determines another. These dependencies are

essential for database normalization, a process that reduces redundancy and prevents

data anomalies by organizing data into well-structured relations. The study highlights

the role of FDs in maintaining data integrity and their influence on the design of

efficient, scalable database systems. By understanding and applying functional

dependencies, database designers can create relational schemas that enhance

performance and ensure data consistency.

73

Introduction

Functional dependencies (FDs) are a fundamental concept in relational database design,

describing the relationship between attributes within a database table (or relation). A

functional dependency exists when one attribute (or a set of attributes) uniquely

determines another attribute. For instance, in a table of employees, the employee ID can

uniquely determine the employee's name, making it a functional dependency. This

concept plays a key role in maintaining the integrity and consistency of data, particularly

during the process of database normalization. Without understanding and managing

functional dependencies, databases may suffer from redundancy, inefficiency, and

various data anomalies.

Functional dependencies are not only theoretical but practical tools that help database

designers define how data should be organized. By analysing FDs, designers can

identify opportunities to break down large tables into smaller, more focused ones that

avoid data redundancy. This process—called normalization—leads to the creation of

relations that are easier to maintain, update, and scale. FDs ensure that the database

adheres to the principles of integrity and performance, making them critical for

developing reliable relational databases. In relational database design, understanding

functional dependencies is crucial for ensuring data integrity and optimizing storage.

Functional dependencies dictate how attributes relate to one another, influencing the

normalization process that minimizes redundancy and prevents anomalies. This report

examines a specific set of functional dependencies within a schema R(A, B, C, D, E, F)

and addresses several key questions related to attribute closures, super key

identification, canonical cover computation, and normalization into Third Normal Form

(3NF) and Boyce-Codd Normal Form (BCNF). By systematically answering these

questions, the report provides a comprehensive analysis of the schema's structure and

offers insights into effective database design practices.

74

Functional Dependency (FD) determines the relation of one

attribute to another attribute in a database management system (DBMS)

system. Functional dependency helps you to maintain the quality of

data in the database. A functional dependency is denoted by an arrow

→. The functional dependency of X on Y is represented by X → Y.

Functional Dependency plays a vital role to find the difference between

good and bad database design.

Example:

Employee

number

Employee Name

Salary

City

1

Dana

50000

San Francisco

2

Francis

38000

London

3

Andrew

25000

Tokyo

In this example, if we know the value of Employee number, we can

obtain Employee Name, city, salary, etc. By this, we can say that the

city, Employee Name, and salary are functionally depended on

Employee number.

• Key terms

• Rules of Functional Dependencies

• Types of Functional Dependencies

• Multivalued dependency in DBMS

• Trivial Functional dependency

• Non trivial functional dependency in DBMS

• Transitive dependency

• What is Normalization?

• Advantages of Functional Dependency

https://www.guru99.com/dbms-functional-dependency.html#2
https://www.guru99.com/dbms-functional-dependency.html#3
https://www.guru99.com/dbms-functional-dependency.html#4
https://www.guru99.com/dbms-functional-dependency.html#5
https://www.guru99.com/dbms-functional-dependency.html#6
https://www.guru99.com/dbms-functional-dependency.html#7
https://www.guru99.com/dbms-functional-dependency.html#8
https://www.guru99.com/dbms-functional-dependency.html#9
https://www.guru99.com/dbms-functional-dependency.html#10

75

Axiom

Axioms is a set of inference rules used to infer all the

functional dependencies on a relational database.

Decomposition

It is a rule that suggests if you have a table that appears

to contain two entities which are determined by the

same primary key then you should consider breaking

them up into two different tables.

Dependent

It is displayed on the right side of the functional

dependency diagram.

Determinant

It is displayed on the left side of the functional

dependency Diagram.

Union It suggests that if two tables are separate, and the PK is

the same, you should consider putting them. together

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

• Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value

of Y.

• Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds.

That is adding attributes which do not change the basic dependencies.

• Transitivity rule: This rule is very much similar to the transitive rule in algebra if x ->

y holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

76

CONCLUSION

In this project, functional dependencies played a critical role in shaping the structure and

integrity of the database. By analyzing how certain attributes in a relation are determined

by others, we were able to identify functional dependencies that guided the design of an

efficient and organized schema. This process helped us ensure data consistency, as well

as reduce redundancy and potential anomalies like data duplication or inconsistency.

The identification and proper management of functional dependencies also allowed us to

apply normalization techniques, which contributed to the overall improvement of the

database's performance and scalability. In conclusion, understanding and leveraging

functional dependencies proved to be a vital step in optimizing the relational database

design, ensuring both data integrity and efficient operation.

77

REFERENCES

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems.

2. Date, C. J. (2004). An Introduction to Database Systems.

3. Rob, P., & Coronel, C. (2015). Database Systems: Design, Implementation, &

Management.

4. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts.

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book.

6. Hoffer, J. A., Venkataraman, R., & Upadhyaya, J. (2016). Modern Database

Management.

7. Batini, C., & Scannapieco, M. (2016). Data Quality: Concepts, Methodologies, and

Techniques.

8. Ponniah, P. (2010). Database Fundamentals: A Complete Introduction to Database

Design.

9. Connolly, T. M., & Begg, C. E. (2015). Database Systems: A Practical Approach to

Design, Implementation, and Management.

10. Chandrasekaran, M., & Nair, A. (2021). Database Management Systems.

11. Atzeni, P., & Torlone, R. (2015). Database Systems.

12. Thomas, J. (2014). SQL for Data Analytics.

13. Danylo, O., & Zakharchuk, O. (2017). Database Management with MySQL.

14. Rob, P., & Coronel, C. (2016). Database Design Using Entity-Relationship Diagrams.

15. Chen, P. P. (1976). The Entity-Relationship Model: Toward a Unified View of Data.

16. Schreiber, R. (2019). Database Systems: Concepts, Languages, Architectures.

17. Wong, K. C. (2018). An Introduction to Database Design.

18. Finkelstein, A. (2017). Database Systems: A Practical Approach to Design,

Implementation, and Management.

19. Klug, A. (2015). Database Management Systems.

20. Melton, J., & Simon, A. R. (2002). SQL: 1999.

78

A FIELD PROJECT REPORT ON

ENTITY RELATIONSHIP DIAGRAM

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

NEELISETTY LAKSHMI

SATWIKA
(221FA20002)

DIVI SUKHESH BABU (221FA20008)

BONTHU NAGA PREETHIKA

REDDY
(221FA20021)

SHAIK ASIM SAYEED (221FA20033)

80

DECLARATION

We hereby declare that our project work described in the field project titled “Entity

Relationship Diagram” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research

(Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of

investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

NEELISETTY LAKSHMI SATWIKA (221FA20002)

DIVI SUKHESH BABU (221FA20008)

BONTHU NAGA PREETHIKA REDDY (221FA20021)

SHAIK ASIM SAYEED (221FA20033)

81

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMET : CSE CSBS

 SECTION : 2A

BATCH : 06

Submitted by:

NEELISETTY LAKSHMI SATWIKA (221FA20002)

DIVI SUKHESH BABU (221FA20008)

BONTHU NAGA PREETHIKA REDDY (221FA20021)

SHAIK ASIM SAYEED (221FA20033)

82

TABLE OF CONTENTS

Name of contents

1. Abstract………………………………………………………83

2. Introduction………………………………………………….84

3. ER Diagrams…………………………………………………85

4. ER Models in Database Design…………………………….86

5. Elements of ER Diagram……………………………………87-89

5.1.Entity………………………………………………………..87

5.2.Attributes……………………………………………………88

5.3.Relationships………………………………………………...89

6. How to draw ER diagrams……………………………………..90

7. Benefits of ER diagram…………………………………………90

8. Conclusion ………………………………………………………91

9. References ……………………………………………………….92

83

Abstract

This paper explores the significance of Entity-Relationship Diagrams (ERDs) in

database design, focusing on their role in representing entities, attributes, and

relationships in a structured format. ERDs provide a conceptual model for understanding

the relationships between data elements in a system, helping stakeholders visualize and

communicate complex database requirements. By analysing the key components of

ERDs and their application in various industries, this study highlights how ERDs

contribute to the development of efficient, well-structured databases. The research also

discusses how ERDs aid in identifying potential design issues early in the development

process, thus ensuring data integrity and system scalability

84

Introduction

An Entity-Relationship Diagram (ERD) is a visual representation of the relationships

and interactions between entities within a database system. ERDs are crucial tools in the

database design process as they provide a high-level view of how data is structured and

related. The primary components of ERDs are entities (which represent real-world

objects or concepts), attributes (which describe properties of entities), and relationships

(which illustrate how entities interact with one another). ERDs help designers and

stakeholders better understand the data requirements and relationships within a system

before the database is built, ensuring clarity and consistency in the final design.

The creation of ERDs simplifies the communication of database structures among

developers, stakeholders, and users, providing a shared language for understanding

complex data relationships. They also play a pivotal role in identifying key elements

such as primary keys, foreign keys, and cardinality (i.e., the nature of relationships

between entities). As a result, ERDs help in avoiding database design flaws, ensuring

that the database is efficient, scalable, and aligned with the functional requirements of

the system.

 modern organizational environments, efficient management of employee time cards is

crucial for accurate payroll processing, performance tracking, and resource allocation.

Traditional paper-based systems are often prone to errors, delays, and difficulties in data

retrieval and analysis. To address these challenges, digitizing time card submissions and

approvals using a robust database system is essential. This report details the design of

such a system, focusing on capturing essential information about employees, managers,

and time cards. By leveraging relational database principles, the system ensures data

integrity, security, and scalability, thereby supporting the company's operational needs

effectively.

.

85

ER Diagram

An Entity Relationship Diagram (ERD) is a visual representation of different entities

within a system and how they relate to each other. For example, the elements writer,

novel, and a consumer may be described using ER diagrams the following way:

ER Diagram Template for Student Enrollment System

86

Use of ER Diagrams

What are the uses of ER diagrams? Where are they used? Although they can be used to

model almost any system they are primarily used in the following areas.

ER Models in Database Design

They are widely used to design relational databases. The entities in the ER schema become

tables, attributes and converted the database schema.

Since they can be used to visualize database tables and their relationships it’s commonly

used for database troubleshooting as well.

Entity relationship diagrams in Software Engineering

Entity relationship diagrams are used in software engineering during the planning stages of

the software project. They help to identify different system elements and their relationships

with each other. It is often used as the basis for data flow diagrams or DFD’s as they are

commonly known.

For example, an inventory software used in a retail shop will have a database that monitors

elements such as purchases, item, item type, item source and item price. Rendering this

information through an ER

diagram would be something like this:

ER diagram example with entity having attributes

In the diagram, the information inside the oval shapes are attributes of a particular entity.

https://creately.com/lp/er-diagram-tool-online/
https://creately.com/lp/er-diagram-tool-online/
https://creately.com/lp/interrelationship-diagram
https://creately.com/lp/interrelationship-diagram
https://creately.com/lp/data-flow-diagram-software-online/
https://creately.com/lp/er-diagram-tool-online/
https://creately.com/lp/er-diagram-tool-online/

87

Entity Relationship Diagram (ERD) Symbols and Notations

Elements in ER diagrams

There are three basic elements in an ER Diagram: entity, attribute, relationship. There are

more elements which are based on the main elements. They are weak entity, multi valued

attribute, derived attribute, weak relationship, and recursive relationship. Cardinality and

ordinality are two other notations used in ER diagrams to further define relationships.

Entity

An entity can be a person, place, event, or object that is relevant to a given system. For

example, a school system may include students, teachers, major courses, subjects, fees, and

other items. Entities are represented in ER diagrams by a rectangle and named using singular

nouns.

Weak Entity

A weak entity is an entity that depends on the existence of another entity. In more technical

terms it can be defined as an entity that cannot be identified by its own attributes. It uses a

foreign key combined with its attributed to form the primary key. An entity like order item

is a good example for this. The order item will be meaningless without an order so it

depends on the existence of the order.

Weak Entity Example in ER diagrams

https://creately.com/diagram-type/objects/database-design/multivalued-attribute
https://creately.com/diagram-type/objects/database-design/multivalued-attribute

88

Attribute

An attribute is a property, trait, or characteristic of an entity, relationship, or another

attribute. For example, the attribute Inventory Item Name is an attribute of the entity

Inventory Item. An entity can have as many attributes as necessary. Meanwhile, attributes

can also have their own specific attributes. For example, the attribute “customer address”

can have the attributes number, street, city, and state. These are called composite attributes.

Note that some top level ER diagrams do not show attributes for the sake of simplicity. In

those that do, however, attributes are represented by oval shapes.

Attributes in ER diagrams, Note that an attribute can have its own attributes (composite

attribute)

Multivalued Attribute

If an attribute can have more than one value it is called a multi-valued attribute. It is

important to note that this is different from an attribute having its own attributes. For

example, a teacher entity can have multiple subject values.

Example of a multivalued attribute

89

Derived Attribute

An attribute based on another attribute. This is found rarely in ER diagrams. For

example, for a circle, the area can be derived from the radius.

Derived Attribute in ER diagrams

Relationship

A relationship describes how entities interact. For example, the entity “Carpenter” may be

related to the entity “table” by the relationship “builds” or “makes”. Relationships are

represented by diamond shapes and are labelled using verbs.

Using Relationships in Entity Relationship Diagrams

Recursive Relationship

If the same entity participates more than once in a relationship it is known as a recursive

relationship. In the below example an employee can be a supervisor and be supervised, so

there is a recursive relationship.

Example of a recursive relationship in ER diagrams

https://creately.com/lp/interrelationship-diagram

90

How to Draw ER Diagrams

Below points show how to go about creating an ER diagram.

1. Identify all the entities in the system. An entity should appear only once in a

particular diagram. Create rectangles for all entities and name them properly.

2. Identify relationships between entities. Connect them using a line and add a

diamond in the middle describing the relationship.

3. Add attributes for entities. Give meaningful attribute names so they can be

understood easily.

ER Diagram Best Practices

1. Provide a precise and appropriate name for each entity, attribute, and relationship in

the diagram. Terms that are simple and familiar always beats vague, technical-

sounding words. In naming entities, remember to use singular nouns. However,

adjectives may be used to distinguish entities belonging to the same class (part-time

employee and full-time employee, for example). Meanwhile attribute names must be

meaningful, unique, system-independent, and easily understandable.

2. Remove vague, redundant or unnecessary relationships between entities.

3. Never connect a relationship to another relationship.

4. Make effective use of colors. You can use colors to classify similar entities or to

highlight key areas in your diagrams.

Benefits of ER diagrams

ER diagrams constitute a very useful framework for creating and manipulating databases.

First, ER diagrams are easy to understand and do not require a person to undergo extensive

training to be able to work with it efficiently and accurately. This means that designers can

use ER diagrams to easily communicate with developers, customers, and end users, regardless

of their IT proficiency.

Second, ER diagrams are readily translatable into relational tables which can be used to

quickly build databases. In addition, ER diagrams can directly be used by database

developers as the blueprint for implementing data in specific software applications.

https://creately.com/usage/strategy-blueprint-template/

91

CONCLUSION
The Entity Relationship Diagram (ERD) project was essential in designing a clear and logical

representation of the system's data structure. By identifying the key entities, their attributes,

and the relationships between them, we were able to visualize the system’s data model in a

way that enhanced understanding and communication among stakeholders. This process

ensured that the system requirements were accurately captured and organized in a coherent

structure.

The ERD not only minimized data redundancy but also provided a solid foundation for

implementing a scalable and maintainable database. It allowed for efficient translation of

business requirements into a relational schema, facilitating future modifications and

improvements. In conclusion, the ERD proved to be a powerful tool for designing a robust

and adaptable data architecture, ensuring long-term efficiency and scalability.

92

REFERENCES

1. GeeksforGeeks. "Difference Between Two-Tier and Three-Tier Database

Architecture."

2. JavaTpoint. "DBMS Architecture."

3. Database Journal. "Understanding Database Architectures."

4. Oracle. "An Introduction to Three-Tier Architecture."

5. DZone. "Web Application Architecture: A Complete Guide."

6. TechTarget. "The Role of Database Security in Business."

7. Medium. "Designing Scalable Systems with a 3-Tier Architecture."

8. Tutorialspoint. "Client-Server Model: An Overview."

9. IEEE Xplore. "Performance Considerations in Web-Based Applications."

10. Lucidchart. "Entity Relationship Modeling."

11. ResearchGate. "Database Design for an Airline Reservation System."

12. Towards Data Science. "Choosing the Right Database Architecture."

13. Harvard Business Review. "Scalability of Web Applications."

14. OWASP. "Security Best Practices for Database Management."

15. NGINX. "Load Balancing Strategies for Web Applications."

16. Acunetix. "Web Application Security: Best Practices."

17. SQLShack. "Understanding SQL Queries."

18. ScienceDirect. "Airline Reservation System: A Comprehensive Overview."

19. ACM Digital Library. "Modern Database Systems: A Brief Overview."

20. Smashing Magazine. "Web Application Performance Optimization Techniques."

93

A FIELD PROJECT REPORT ON

FUNCTIONAL DEPENDENCIES

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

DOSAPATI YASWANTH GUPTHA (221FA20003)

TIYYAGURA DINESH REDDY (221FA20004)

DEEVI PRAVEEN (221FA20009)

GUJJALA VENKATA REDDY (221FA20027)

95

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies” which is being submitted by us for the partial fulfilment in the department of

ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed to be

University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are carried

out by us under the guidance of Dr. CH. Rose Rani.

DOSAPATI YASWANTH GUPTHA (221FA20003)

TIYYAGURA DINESH REDDY (221FA20004)

DEEVI PRAVEEN (221FA20009)

GUJJALA VENKATA REDDY (221FA20027)

96

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMENT : CSE CSBS

SECTION : 2A

BATCH : 07

Submitted by:

DOSAPATI YASWANTH GUPTHA (221FA20003)

TIYYAGURA DINESH REDDY (221FA20004)

DEEVI PRAVEEN (221FA20009)

GUJJALA VENKATA REDDY (221FA20027)

97

TABLE OF CONTENTS
Name of contents

1. Abstract………………………………………………………………98

2. Introduction…………………………………………………………..99

3. Functional dependencies……………………………………………..100

4. SQL Queries…………………………………………………………..100

5. Significance of Closure in Fundamental Dependencies……………………102

6. Normalization……………………………………………………………….102-105

6.1. Levels of Normalization………………………………………………….102

6.2. Decomposed Relations……………………………………………………104

 7. Conclusion…………………………………………………………….105

 8. References……………………………………………………………..106

98

Abstract
This paper explores the significance of functional dependencies (FDs) in the design and

optimization of relational databases. Functional dependencies define the relationships

between attributes within a table, where one attribute uniquely determines another. By

guiding the normalization process, FDs play a critical role in reducing data redundancy and

avoiding anomalies during data operations. This study provides an in-depth look at the

different types of functional dependencies and their application in relational schema design,

demonstrating how they contribute to the creation of well-structured, scalable, and efficient

database systems.

99

Introduction

Functional dependencies (FDs) are a core principle in relational database theory, crucial for

understanding the relationships between attributes in a database. They dictate that if two

records in a relation share the same value for a set of attributes (known as a determinant),

they must also have the same value for another attribute that is functionally dependent on the

determinant. For example, in a student database, the student ID determines the student's name

and grade. Functional dependencies are vital for database normalization, a process that

eliminates redundancy and ensures data integrity, making databases more efficient and

reliable.

Proper identification and management of functional dependencies help prevent issues such as

update, insert, and delete anomalies. These anomalies can cause inconsistent data, making the

system prone to errors. By analysing functional dependencies, database designers can refine

relational schemas, breaking them into smaller, more cohesive tables. This structuring not

only optimizes data storage and retrieval but also ensures that the database remains flexible

and scalable over time, enhancing its performance and usability.

100

This part deals with a relation R having attributes A,B,C,D, and a set of functional

dependencies (FDs) is given for each case. The goal is to:

➢ Identify candidate keys (minimal set of attributes that uniquely identify each tuple).

➢ Identify the best normal form that the relation satisfies (1NF, 2NF, 3NF, or BCNF).

➢ If the relation is not in BCNF, decompose it into a set of BCNF relations while preserving the

given dependencies.

B. SQL Queries

In this part, there are four relations describing airline flight information, employees, aircraft,

and certifications. The task is to write SQL queries for various scenarios:

➢ Each query addresses a specific information retrieval task related to the provided relations,

and SQL queries are formulated to achieve these tasks. The responses take into account the

given database schema and requirements.

Flights Table

CREATE TABLE Flights(flno INTEGER PRIMARY KEY, from_flight
VARCHAR(255),to_flight VARCHAR(255), distance INTEGER, departs TIME, arrives
TIME, price REAL);

desc Flights;

AIRCRAFT TABLE

CREATE TABLE Aircraft (aid INTEGER PRIMARY KEY, aname VARCHAR(255),
cruisingrange INTEGER);

desc Aircraft;

101

Certified Table

CREATE TABLE certified (eid INTEGER,

aid INTEGER ,PRIMARY KEY (eid, aid),

FOREIGN KEY (eid) REFERENCES employees (eid), FOREIGN KEY (aid)
REFERENCES aircraft (aid));

desc certified;

Employees Table

CREATE TABLE employees (

eid INTEGER PRIMARY KEY,

ename VARCHAR(255), salary INTEGER);

desc employees;

Data integrity is ensured through unique constraints on the primary keys of each table. These

constraints prevent the insertion of duplicate values into the tables. Additionally, the foreign

keys in the 'Certified' table enforce a relationship between the 'Employees' and 'Aircraft'

tables, ensuring that each employee is certified to fly a valid aircraft.

102

Significance of Closure in Fundamental Dependencies:

• Identifying Candidate Keys: Closures help in determining the minimal sets of attributes that

uniquely identify each row in a table, ensuring that there are no redundant candidate keys.

• Achieving Normalization: Closures guide the normalization process, ensuring that tables are

organized to minimize redundancy and anomalies, leading to efficient data storage and

retrieval.

• Preventing Anomalies: Closures help in identifying potential update anomalies and insertion

anomalies, preventing inconsistencies and ensuring data integrity.

• Optimizing Database Queries: Understanding closures can aid in optimizing database

queries by identifying relevant attributes and reducing unnecessary joins.

• Enhancing Database Design: Closures provide a deeper understanding of the relationships

between attributes, facilitating efficient and effective database design.

NORMALIZATION:

Data normalization is a crucial aspect of database design that involves organizing data in a

structured manner to minimize redundancy, improve data integrity, and enhance data

management efficiency. It entails dividing a large table into smaller, more manageable tables

while preserving the relationships between them.

Why is Data Normalization Important?

Eliminates Redundancy: Data redundancy occurs when the same data is stored multiple

times in different tables. Normalization reduces redundancy by storing data in a single,

designated place, preventing unnecessary duplication and ensuring data consistency.

Improves Data Integrity: Data integrity refers to the accuracy, consistency, and reliability

of data within a database. Normalization reduces data anomalies, which are inconsistencies in

data caused by redundancy. This, in turn, enhances data integrity and ensures that data

accurately reflects the real world.

Levels of Normalization:

Data normalization is typically achieved through a series of steps, each representing a

specific level of normalization. These levels are:

First Normal Form (1NF): Eliminates repeating groups of data by ensuring that each table

contains only atomic values, not arrays or lists.

Second Normal Form (2NF): Eliminates redundant dependencies on primary keys by

ensuring that non-key attributes are fully dependent on the primary key.

Third Normal Form (3NF): Eliminates transitive dependencies, where a non-key attribute is

dependent on another non-key attribute.

103

Boyce-Codd Normal Form (BCNF): A stricter form of 3NF that ensures that every

determinant is a candidate key.

To determine the highest normal form (NF) for a given relation, we need to identify the

functional dependencies (FDs) and then apply the rules of normalization. The highest NF is

BCNF, which is a stricter form of 3NF.

Given Relation: R={A,B,C,D}

Set 1: C → D, C → A, B → C

From The Above Relation It Can Be Said That B → C ,C → D, C → A

Closure of (B+)={C,D,A}

• B is the candidate key and Primary key

• Best normal form: BCNF

• Decomposition not needed

• For the first set of FDs (C → D, C → A, B → C), we can directly conclude that the relation is

in BCNF since all three FDs satisfy the BCNF conditions. No further decomposition is

necessary.

Set 2: B → C, D → A

From The Above Relation It Can Be Said That B → C ,D→ A

Closure of (BD+)={B,D,A,C}

• BD is the candidate key and Primary key

• Decomposition into {B} and {D, A}

• The Above Relation Is Not In 2NF as Partial Dependency Is Present

• So We Divide The Above Relation into to 3 realtions

• R1(B,D),R2(B,C),R3(D,A)

• BD are the primary key, B is the primary key ,d is the primary key

• The Above Relations Satisfies the 2NF,3NF,also BCNF

Set 3: ABC → D, D → A

From The Above Relation It Can Be Said That ABC → D ,D→ A

Closure of (ABC+)={A,B,C,D}

• ABC is the Candidate key

• The Functional Dependency D→ A is Reduanant

• Because it’s Removal doesnt’t affect the {A,B,C}

• With D→ A (ABC+)={A,B,C,D}

• Without D→ A (ABC+)={A,B,C,D}

104

The Above Relation Satisfies 2NF,3NF,and also BCNF

2NF:No partial dependencies

3NF:No Transitive Dependency

Therefore it is in BCNF

The third set (ABC → D, D → A) indicates that the relation is already in 3NF, the highest

level of normalization before BCNF. No further decomposition is required.

Set 4: A → B, BC → D, A → C

From The Above Relation It Can Be Said That A → B ,BC→ D, A → C

Closure of (A+)={A,B,C,D}

• A is the Candidate key as well as the Primary key

• The Above Relation Satisfies 2NF,3NF,and also BCNF

• 2NF:Yes partial dependencies are Present

• Divide the table into two Relations

• A → BC R1{A,B,C,D}

• BC→ D R2{B,C,D}

• 3NF:No Transitive Dependency present

• The Above Relation Satisfies the Both 3NF and also BCNF

Set 5: AB → C, AB → D, C → A, D → B

From The Above Relation It Can Be Said That AB → C ,AB→ D, C → A, D → B

Closure of (AB+)={A,B,C,D}

• AB is the Candidate key

• The Functional Dependencies :C → A, D → B are Reduanant so, it is Removed

• AB → C

• AB→ D -> AB → C , AB→ D

• C → A

• D → B

• The Above Realation Satisfies 2NF,3NF And Also BCNF

Decomposed Relations:

1.R1(AB, C, D) with AB -> C, AB -> D

2.R2(CD, A, B) with C -> A, D -> B

Now, let's examine the preserved dependencies:

105

1. Preserved Dependencies in R1

AB -> C (original)

AB . D (original)

• No new dependencies are introduced in R1

2. Preserved Dependencies in R2

C -> A (original)

D -> B (original)

No new dependencies are introduced in R2

Therefore, the original functional dependencies C -> D, C -> A, B -> C from the first set, as

well as all other dependencies from the original sets, are preserved in the decomposed

relations R1 and R2. The decomposition process has maintained the integrity of the

original dependencies.

Decomposed Relations:

1.R1(AB, C, D) with AB -> C, AB -> D

2.R2(CD, A, B) with C -> A, D -> B

Now, let's examine the preserved dependencies:

1. Preserved Dependencies in R1

AB -> C (original)

AB -> D (original)

• No new dependencies are introduced in R1

2. Preserved Dependencies in R2

C -> A (original)

D -> B (original)

No new dependencies are introduced in R2

106

CONCLUSION

The analysis of functional dependencies was a fundamental aspect of this project, enabling us

to understand the relationships between different attributes within our database. By

identifying these dependencies, we ensured that specific attributes were accurately defined in

relation to others, which helped maintain data integrity and consistency throughout the

system. This understanding allowed us to detect and eliminate potential redundancies and

anomalies that could compromise the reliability of the database.

Additionally, leveraging functional dependencies facilitated the normalization process,

allowing us to structure our relational schema effectively. This structure not only optimized

data storage but also improved query performance and ease of maintenance. In summary, a

thorough understanding of functional dependencies has been crucial in developing a well-

organized and efficient database, ensuring long-term reliability and scalability for future

needs.

107

REFERENCES

1. Date, C. J. (2004). An Introduction to Database Systems. Pearson Education.

2. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson.

3. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book. Prentice Hall.

4. Korth, H. F., & Silberschatz, A. (2010). Database System Concepts. McGraw-Hill.

5. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, &

Management. Cengage Learning.

6. MySQL Documentation. (2023). MySQL 8.0 Reference Manual. Oracle.

7. Ramez Elmasri. (2011). Fundamentals of Database Systems. Addison-Wesley.

8. Codd, E. F. (1990). The Relational Model for Database Management. Addison-

Wesley.

9. SQL Tutorial. (2023). W3Schools SQL Tutorial. [Online Resource].

10. Database Security: Concepts, Approaches, and Challenges. (2022). IEEE Access.

11. Database Management for Small Airports. (2021). Aviation Management Journal.

12. Efficient Query Processing in SQL. (2022). Journal of Computer Science.

13. Optimizing Database Performance. (2023). Journal of Database Management.

14. The Importance of Data Integrity. (2021). Database Trends and Applications.

15. Enhancing Security in Database Systems. (2022). Security and Privacy in Data

Management.

108

A FIELD PROJECT REPORT ON

FUNCTIONAL DEPENDENCIES, RELATIONAL SCHEMA, SQL QUERIES

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

ADVANCED COMPUTER SCIENCE & ENGINEERING(CSBS)

Submitted by

Department of ADVANCED COMPUTER SCIENCE AND ENGINEERING (CSBS)

School of Computing & Informatics

Vignan’s Foundation for Science, Technology and Research (Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April-2024

KOPPOJU VENKATA NAGA SAI

TEJA
(221FA20007)

PUNATI RAMESH (221FA20012)

SWARNA SRI KAVYA (221FA20017)

GERA JOSHUA (221FA20032)

110

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies, Relational Schema, Sql Queries” which is being submitted by us for the

partial fulfilment in the department of ACSE, Vignan’s Foundation for Science, Technology

and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result

of investigations are carried out by us under the guidance of Dr. CH. Rose Rani.

KOPPOJU VENKATA NAGA SAI TEJA (221FA20007)

PUNATI RAMESH (221FA20012)

SWARNA SRI KAVYA (221FA20017)

GERA JOSHUA (221FA20032)

111

 DATA BASE MANAGEMENT SYSTEM

COURSE : II B.Tech

SEMESTER : I

DEPARTMENT : CSE CSBS

SECTION : 2A

BATCH : 08

Submitted by:

KOPPOJU VENKATA NAGA SAI

TEJA
(221FA20007)

PUNATI RAMESH (221FA20012)

SWARNA SRI KAVYA (221FA20017)

GERA JOSHUA (221FA20032)

112

Table of Contents

Name of contents

1. Abstract…………………………………………………….113

2. Introduction……………………………………………….114

3. Introduction to schemas………………………………….115

3.1. DDL………………………………………………….115

3.2. DML………………………………………………….115

 4. Solution For The Given Question In SQL……………………116

 5. Conclusion………………………………………………………119

 6. References……………………………………………………….120

113

Abstract

This paper explores the interconnection between functional dependencies, relational schemas,

and SQL queries in the context of relational database design and management. Functional

dependencies define the relationships between attributes, guiding the normalization process

to create efficient, well-structured relational schemas. These schemas serve as the blueprint

for organizing data in a relational database, ensuring minimal redundancy and high data

integrity. SQL queries are the tools used to interact with the data stored within these schemas,

enabling users to retrieve, manipulate, and manage information efficiently. This study

provides a comprehensive understanding of how functional dependencies influence relational

schemas and how SQL queries are used to harness the full potential of relational databases

for optimized performance and scalability.

114

Introduction

Functional dependencies (FDs), relational schemas, and SQL queries are integral components

of relational database systems. Functional dependencies describe the relationship between

attributes in a table, where one attribute uniquely determines another. These dependencies are

crucial in shaping the structure of relational schemas, which define how data is organized and

related in a database. Relational schemas, in turn, are implemented through SQL (Structured

Query Language), which is used to query, manipulate, and manage the data stored in a

relational database. Together, these concepts form the foundation for building efficient,

scalable, and reliable database systems.

Functional dependencies play a key role in normalizing databases, helping designers to

minimize redundancy and ensure data integrity. This leads to the creation of optimized

relational schemas, which define tables and their relationships in a way that supports efficient

data management. SQL queries are the tools that interact with this structure, allowing users to

retrieve, update, and manage data according to the defined schema. Understanding the

interplay between functional dependencies, relational schemas, and SQL queries is essential

for designing and maintaining high-performing databases that meet the needs of various

applications and users.

An equivalence is shown between functional dependency statements of a relational database,

where “→” has the meaning of “determines,” and implicational statements of propositional

logic, where “⇒” has the meaning of “implies.” Specifically, it is shown that a dependency

statement is a consequence of a set of dependency statements iff the corresponding

implicational statement is a consequence of the corresponding set of implicational statements.

The database designer can take advantage of this equivalence to reduce problems of interest

to him to simpler problems in propositional logic. A detailed algorithm is presented for such

an application. Two proofs of the equivalence are presented: a “syntactic” proof and a

“semantic” proof.

115

Introduction:

Introduction to schemas will be the:

A schema is a logical skeleton structure of the database to store data. Schema is a collection

of tables with rows and columns and a separate query can be written for the schemas like

databases. A schema is a template in MySQL. They define size, type, a grouping of

information. The schemas have database objects like views, tables, and privileges. Schemas

include data types, functions, and operators. They are used in business analysis identifying

features and how to implement in new data collections using relational databases and

information schemas.

DML (Data Manipulation Language):

 DML commands deal with operations on data present in the database and DML

commands make up a majority of the SQL statements.

INSERT – is used to insert data into a table.

UPDATE – is used to update existing data within a table.

DELETE – is used to delete records from a database table.

DDL (Data Definition Language):

DDL commands are those that can be used to define the database schema. It

consists of metadata of the database schema and also create and modify the

structure of the various objects within the database.

CREATE – is used to create the database or its objects (table index, function,

views, store procedure and triggers).

DROP – is used to delete objects from the database.

ALTER -is used to alter the structure of the database.

TRUNCATE –is used to remove all records from a table, including all spaces

allocated for the records are removed.

116

SOLUTION FOR THE GIVEN QUESTION IN SQL:-

The schemas into sql quaries solution:

117

FOR CRATE A TABLE FOR PERSONS (DIAGRAM):-

FOR CRATE A TABLE FOR BANK (DIAGRAM) :-

FOR CRATE A TABLE FOR COMPANY (DIAGRAM) :-

118

FOR CRATE A TABLE FOR CAR2(DIAGRAM) :-

FOR CRATE A TABLE FOR TRUCK3(DIAGRAM) :-

FOR CRATE A TABLE FOR OWNS(DIAGRAM) :-

119

CONCLUSION

This project has successfully integrated the concepts of functional dependencies,

relational schema, and SQL queries to create a robust database design. By analyzing

functional dependencies, we established clear relationships between attributes, which

guided the development of a well-structured relational schema. This schema not only

minimized data redundancy but also ensured data integrity, providing a solid foundation

for our database.

Furthermore, the implementation of SQL queries allowed us to interact with the

database efficiently, enabling data retrieval, manipulation, and management in a

streamlined manner. The queries were designed to leverage the established functional

dependencies and relational structure, optimizing performance and ensuring accurate

results. In conclusion, this project highlights the interconnectivity of functional

dependencies, relational schema design, and SQL query execution as essential

components for building a reliable, efficient, and scalable database system.

120

REFERENCES

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems.

Pearson.

2. Date, C. J. (2012). Database Design and Relational Theory. O'Reilly Media.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). Database System

Concepts. McGraw-Hill.

4. Stein, M. (2014). E-commerce 2014: Business, Technology, Society. Pearson.

5. Turban, E., & Volonino, L. (2018). Information Technology for Management.

Wiley.

6. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, &

Management. Cengage Learning.

7. Chen, P. P. (1976). "The Entity-Relationship Model: Toward a Unified View of

Data." ACM Transactions on Database Systems.

8. Grover, V., & Saeed, K. (2009). "The Role of Information Systems in E-

Commerce." Information Systems Research.

9. Rouse, M. (2020). "What is a DBMS?" TechTarget.

10. Chaffey, D. (2015). Digital Business and E-Commerce Management. Pearson.

11. Vassiliadis, P., & Simitsis, A. (2008). "Data Warehouse Modeling and Design."

Data Warehouse Systems.

12. Kimball, R., & Ross, M. (2016). The Data Warehouse Toolkit: The Definitive

Guide to Dimensional Modeling. Wiley.

13. Zikopoulos, P. C., & Gilfix, M. (2017). IBM Big Data Analytics: Architecture

and Use Cases. McGraw-Hill.

	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf
	b760710ea80c4b9879e58f00adb18f5f67521df8b356415219dfdcf98c353c2b.pdf
	24042020_E-R Model.pdf

